e —
XERO}
mYy

)

-
4 1 L4
k3 1
.
.

The Greenhouse Effect in a Gray Planetary Atmosphere

Rupert Wildt
Yale University Observatory

and

Institute for Space Studies
Goddard Space Flight Center, NASA

New York, New York .55 pricE s

CFSTI PRICE(S) $

Hard copy (HC) /‘ 0 O

Microfiche (MF) : 50
ABSTRACT

g\'ﬁ £ 653 July 65
Hopf's analytical solution is illustrated for several values
of the greenhouse parameter, i.e., the ratio of gray absorption

coefficients for insolating and escaping radiation, assumed to be
/

constant at all depths. QQ“XQ
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In a classical memoir Emden (1913) formulated thé problem of
strict radiativeequilibrium in a gray atmosphere of infinite depth,
and Milne (1922).put it into the form of the non-homogeneous inte-
gral equation now bearing his name. The Neumann soclution of this
equation was reduced by Hopf (1934) to the product of an integral
over his 77 -function times what later on came to be called
Chandrasekhar's H-function, Many years after precise values of
these functions had become available, attention was called to Hopf's
solution, and the temperature distribution in absence of a greenhouse

W : )
effect was determined for several angles of incidence of the §§olating

flux (Wildt 1961) . Moreover, Hopf's solution comprises, by a certain
scale transformation, the case of an atmosphere in which bothlthg
absorption coefficients for incident solar radiation and gscaping
planetary radiation are” gray, provided that their ratio, ‘Y , here
referred to as greenhouse parameter, is independent of depth. Illus-

tration of the greenhouse effect had to await preparation of tables

Y th arm-qents arpater _.h_ﬂ!\ |nitv (Stibbs 1962)
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and their extension during the work reéorted here, As the familiar
planetary atmospheres are non-gray in the extreme, this model of

the greenhouse effect does not contribute much to understanding
their temperature regime, Nevertheless, it deserves to be known
more widely; for to date it is the only problem in planetary radia-
tive equilibrium that has been solved rigorously.

A parallel insolating flux,
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incident at an angle f;==cosii}b with the normal to the surface

of an infinitely deep, plane parallel atmosphere, whose gray absorp-
tion coefficients are )CP for planetary radiation and r{s for

solar radiation; and a local rate of isotropic emission,
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at the optical depth
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below the boundary of the atmosphere, jointly imply the local enérgy

balance in strict radiative equilibrium

'z". "}’L/ ]

Beap= APEp)t + Spe ©
; v v
where jcs //3‘\: P = w </ is a constant independent of

depth and A ~ denotes the Hopi operator,

Aft(0)] = £ /) £(1¢1)dr. ®

The general solution of (4) is the sum of the solution of the
homogeneous Milne equation and of the Neumann solution for the ex-

ponential term. Hence the planetary source function is

'_Bf'tj/g)= ;71.][';(0‘) F o+ mj('z: nﬂ«) S} | (6)
with the following notation:
Vil F emergent flux of planétary heat generated in the remote
interior,
%(’2‘ ]=T+ 7 (t) normalized solution of the homogeneous Milne
eq_uatifm,

\S insolating flux
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9(('("/ Mﬁm) normalized Newmann solution of the non-homogeneous

. Milne equation, sc, (Hopf 1934)

o~ et (g \t¥t)
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If the planetary heat source is neglected ( Th~=0 ) , the
temperature distribution in local thermodynamic equilibrium /&cm»u-s

%

ﬁqméw) /lg = [ng,(:’//mﬂ&)] ) (8)
where 7;=' 372 CK Z/ 7? , with ’R in astronomical units, is

the effective temperature of the insolating flux, e.g.

Planet Venus Jupiter Saturn Uranus Neptune

7 °K  ues 173 128 89 78

The behavior of the right-hand side of (8) as function of the
greenhouse paramete: is shown on Fig. 1-8. A recent paper on the
greenhouse gffect in a gray atmosphere (King 1963) neither makes
reference to Hopf, nor does it provide extensive illustration of the
torm of the solution.

Thanks are due to.Prof. D.W_N. Stibbs and Dr. K. Grossman for

high-precision values of the functionsH and 7 , and to the latter
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Fig. 1. Temperature distribution as a function of optical depth
in the absence of a greenhouse effect (n=1) for flux incident at

various angles.

Fig. 2. Temperature distribution as a function of optical depth

with a moderate greenhouse effect (n=1/10) for flux incident at

various angles.

Fig. 3. Temperature distribution as a function of optical depth
with a strong greenhouse effect (n=1/100) for flux incident at

various angles,

Fig. 4. Temperature as a function of 1og10n foi/» =0,05 at various

optical depths.
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Fig. 5. Temperature as a function of log ™n fOf/u =0.25 at various

optical depths.

Fig. 6. Temperature as a function of loglon fOﬁ/k-=0.50 at various

optical depths.
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Fig. 7. Temperature as a function of log ™n foi/m,=0.75 at various

optical depths.
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Fig. 8. Temperature as a function of log™ ™n foi/u,=1 at various

optical depths,

e
‘XEROQ
cory?




(o]
o o0 93§
Q
o - & < oo & g 82 8¢ 8 3889
.1 .
]
n=1
/ 1.00
0.95
—
W
1.0 0.85
075
0.9 fr—7 0.65
(-\\¥ 055
AN
N 045
T/ Te
0.35
0.7 \
0.25 e
06
\ 0.15
0.5
0.0
0.4 k o.os'
[\L
r T T r=log(T+!)
00 1.0 20 30
Fig. 1
KERGY fkERD" r;
coey ‘cory - €




000i
008

009

oov

002

001
(01°]

09
1614

1.00

0.90
0.80
070
0.60

0.50

.40
0.35
0.30
0.25

0.20
015

0.0

0.05

0z

/)
Z

/
//
/

%

log(T+1)

T
3.0

20

1.0

1.8

1.4

0.8
06

0.4

00

Fig! 2




'
3.0

i
2.0

AN

002 N\ \

N LA

08 , ////// N //

05 AN NN VAN
AN\ NN\
oz ///// /////

]
1.0

; N

: XN u/////// \

L lg | A NN Y

| ._l ///////M/// /
,,. AN

m

<
o o

3.2
2.8
2.4
2.0
1.6
1.2

T
T/ Te

i
0.0




/ T=50

0.9

T/Te

0.8

0-6 \
/ T=2
//
0.4 T~
T=0
0.0 0.5 10 1S 2.0 2.5 30

XERD)
comvy !

'XERO " IHERG"
cosy TeeY




T/ Te

.
¥ERO}
=

T=1000
T=500

T =100

VN

T =2

T=1

AN

-log n —=

30

1L



;;—"’ w:‘m .'33‘;;", I -agg;u R et = d_sgg;)‘a.

36

T =1000
34 /

AT =500
32 / /
/ /
a
26 /
I 26
24 1 T=I100
T/Te /
™ 22 / /

1.8 //
1.6
1.4 / T=I0
1.2 /,/ T=5
L0 ,/ .

T=1
0.8

\\

T=0

0.6
00 0.5 1.0 1.5 20 2.5 3.0
-log n —



‘ ~
- [ a4
4.2 T =1000
40 . /
38 / T =500
36 / /
34 //
T 3.2 //
30
T/ Te /
28
/ T=100
26
24
. L T=50
o 7/ i
/ ,
1.6 7 ‘
% P— T =10 ]
. 1.4 A~ |
=5 |
. L 1
’ / - T=2 l
1.0 ‘% T=1 ‘
T=0 |
06 |
0.0 0S5 1.0 1.5 20 25 3.0
-log n —=
Fig. 7
Xero) : 889 fxepe T




P . 1 B .
ASOD & s T i il A o T N o T
OHBX'L“A m e mtla q.km.._h-i O PR o&

Oxax

4.8 -

T =1000

N / / T =500
; 4
' /
T/T. 32 /
e / ;

3.0 y

/ " T =100
_—

2.8 /
2.6 // :

ot =50
24 —]

2.2
e
2.0 /

NN
\

— =2

1.0 -

0.8 T=0
0.0 -05 1o 15 2.0 25 3.0

-log n—=

Fig, 8



